Winners! teacher notes adhere to the following format:

A general introduction to the book

A table of article information for the main articles

<table>
<thead>
<tr>
<th>Text Type</th>
<th>Science Concepts</th>
<th>Vocabulary Not Glossarized</th>
<th>Visual Literacy Features</th>
<th>High-Frequency Words</th>
<th>Phonics Revision</th>
</tr>
</thead>
</table>

A table of outcomes, activities, and assessment for the main articles

<table>
<thead>
<tr>
<th>Language Mode</th>
<th>Outcome</th>
<th>Demonstration Materials</th>
<th>Student Task</th>
<th>Assessment</th>
</tr>
</thead>
</table>

A suggested teaching sequence for each article. The teaching sequence for the main articles has sections for before, during, and after reading. Within these, there are opportunities for you to demonstrate and teach, and for the students to apply learning. The notes also contain graphic organizers for demonstration and for the students to complete.

A wrap-up of the book
Opposites Attract

Introduce the Book

Read the title to the students and have them look at the cover photo. Discuss this photo as it relates to the title. Introduce the discussion by asking questions such as:

- Have you heard the expression “opposites attract” before? What does it usually mean?
- What do you think it means in the context of this book?
- Do you think it is a good title for a book about magnets?
- Is this a good cover photo for a book with this title?

Have the students turn to the contents page. Revise the purpose of the table of contents by asking questions such as:

- What does the table of contents tell you about what is in the book?
- Which page would you turn to if you wanted to find out how magnets and electricity are related?
- Which article has the longest title?
- Which article is most likely to be a fiction story?

Ask the students what specific information they already know about magnets. Fill in the brainstorm map graphic organizer OHT (on page 22) with their responses.

Have the students turn to pages 2–3 to establish a purpose for reading. Read the questions with the students. Add their answers to the brainstorm map graphic organizer. Explain that as they read the article in the book, they need to be thinking about the information on the brainstorm map and checking to see if they were right.

Ask the students to read aloud the words at the bottom of the page. Demonstrate how to use the pronunciation guide. Have the students read chorally the words five times to become fluent with the pronunciation.

Have the students turn to the glossary on pages 30–31. Invite them to look at the photos and read the glossary words and definitions. Write on the board any words in the glossary definitions that students do not know the meaning of, for example: mineral. Tell the students that they need to look out for these words as they read.
What Are Magnets?

Article Information

<table>
<thead>
<tr>
<th>Text Type</th>
<th>Science Concepts</th>
<th>Vocabulary Not Glossarized</th>
<th>Visual Literacy Features</th>
<th>High-Frequency Words</th>
<th>Phonics Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Article</td>
<td>Magnets have two poles. Opposite poles attract. Like poles repel.</td>
<td>area, attract, bar magnet, compass, Earth, force field, middle, needle, North Pole, objects, repel, shape, South Pole, space</td>
<td>Labelled diagrams Photos</td>
<td>answer, around, change, find, know, other, place, read, work</td>
<td>Consonant digraphs: change; each, which; push; shape; there, things, thousands; Earth, north, south; what; string, strong</td>
</tr>
</tbody>
</table>

Outcomes, Activities, Assessment

<table>
<thead>
<tr>
<th>Language Mode</th>
<th>Outcome</th>
<th>Demonstration Materials</th>
<th>Student Task</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary</td>
<td>Use affixes to analyze meanings of words.</td>
<td>Word web OHT</td>
<td>Fill in word web.</td>
<td>Word web</td>
</tr>
<tr>
<td>Reading Comprehension</td>
<td>Use structural features of non-fiction text to access information.</td>
<td>Idea web OHT</td>
<td>Complete idea web.</td>
<td>Idea web</td>
</tr>
<tr>
<td>Writing Strategies/Applications</td>
<td>Write an explanation.</td>
<td>Explanation OHT</td>
<td>Complete diagram and write explanatory sentences.</td>
<td>Completion of diagram and appropriateness of sentences</td>
</tr>
<tr>
<td>Speaking and Listening</td>
<td>Use volume, phrasing, and pace to enhance meaning.</td>
<td>Sentence written as writing demonstration</td>
<td>Rehearse and present sentence to the group.</td>
<td>Quality and appropriateness of presentation</td>
</tr>
</tbody>
</table>
Before Reading

Introduce the Text and Build Background

Have the students turn to page 4 and read the title of the article.
Revisit the discussion of the cover to discuss magnets further. Invite the students to look at the photo on page 4, and describe where this magnet is and where it is being used. Ask the students if they use magnets for anything. Add any new ideas to the brainstorm map graphic organizer.
Ask the students to read the text on page 4. Call their attention to the words attract and repel. Reinforce that a single magnet does both of these things. Tell the students that, as they read, they should search for information that explains how a single magnet attracts and repels at the same time.

Demonstrate Reading Outcome

Tell the students that an article covers a general topic. Within the article, specific information pertaining to the general topic will be organized into subtopics.
Tell the students that this article is divided into an introduction of the general topic, and two subtopics. Tell them that there are structural features in factual text that help them understand the way in which the information is organized.
Use the idea web OHT (on page 23) to identify the general topic of this article as magnets.
Explain that after they have read the text, they will complete their own idea web.
During Reading

Review Glossary Vocabulary
Have the students leaf through the article, looking for the bold-faced words. Have them read the words to reinforce the pronunciation. Then invite the students to give the meaning of the words or refer back to the glossary to refresh their memories.

Demonstrate Vocabulary Outcome
Tell the students that many words have suffixes. These suffixes can change a word from being one part of speech, for example a noun, to another part of speech, so that it can be used for a different purpose, but still retain a related meaning.

Use the word web OHT (on page 24). Tell the students that the suffix -ic, when added to a noun, transforms it into an adjective. Invite the students to identify an -ic word on page 4. Elicit the word magnetic. Reinforce that magnetic is an adjective, modifying a noun, i.e., force. Ask the students to identify the root noun from which the word magnetic is derived. Elicit the answer magnet.

If the students query magic, explain that they cannot assume the presence of a suffix. In order to identify a suffix, they must be able to identify the root word. Demonstrate to the students that there is no root noun in magic, and that it is therefore not an -ic word.

Teach Reading Outcome
Have the students reread page 4 and continue on to read page 5.

Invite the students to identify the point of division between the introduction of the general topic and the first subtopic. Elicit the answer that the first subtopic begins at the top of page 5.

Invite the students to identify the structural feature that helps them to distinguish the way in which the information is organized. Elicit that the structural feature is a subheading, i.e., Poles.

Write Poles in one of the two second level bubbles on the idea web OHT.

Tell the students that dividing the information into subtopics makes it easier for them to identify the main ideas in the text, by grouping them together in related categories.

Apply Reading Outcome
Have the students read the rest of the article using the structural features to identify the second subtopic, and identifying the main ideas within each subtopic. Invite them to write the information on their idea webs.

Tell the students that one piece of information has not been grouped with other related ideas. Ask them to identify this piece of information and reorganize it on their idea webs so that it is grouped with other related information.

Tell the students to use the photos and diagrams to enhance their understanding of the information.
After Reading

Apply Comprehension Outcome

Discuss the information the students learned from reading the article. Add any new information to the brainstorm map graphic organizer.
Hand out the idea web (on page 23). Have the students use the information to complete their idea webs.
Ask volunteers to provide information from their idea webs to help you complete the idea web OHT. Invite them to identify the piece of information to be reorganized on the idea web (i.e., the information about cutting magnets into two pieces on page 10).
Discuss with the students if the subheadings Poles and Magnetic Fields made it easier for them to understand the way in which the information in the text was organized.

Apply Vocabulary Outcome

Hand out the word web (on page 25). Ask the students to write the suffix -ic in the centre bubble. Reinforce that the function of -ic is to turn a word into an adjective. Brainstorm with the students all the words they know that end in -ic and write them on the board, for example metallic, poetic, historic.
Invite the students to identify the root word in each case that is being modified.
Have the students write the words on their word webs.

Demonstrate Writing Outcome

Use the explanation OHT (on page 26). Complete the first diagram by writing north pole and south pole in the two labels.
Write an explanatory sentence in the space provided under the first diagram, for example Two south poles repel each other.

Apply Writing Outcome

Hand out the explanation sheet (on page 26). Have the students complete the second and third diagrams, and write the accompanying sentences, modelling their sentences on the one you have written on the OHT.
Demonstrate Oral Language Outcome

Draw the first diagram and its labels on the board and use it as a reference to present your sentence to the group. Show them how to hold it up to the audience, and read it fluently and with expression.

Apply Oral Language Outcome

Divide the students into pairs. Have the students choose one each of the sentences that they have written. Ask them to rehearse and present their sentence to their partner. Have them use the relevant labelled diagram as a reference.

High-Frequency Words and Phonics

Teach or revise high-frequency words and phonics as necessary.
Magnets and Electricity

Article Information

<table>
<thead>
<tr>
<th>Text Type</th>
<th>Science Concepts</th>
<th>Vocabulary Not Glossarized</th>
<th>Visual Literacy Features</th>
<th>High-Frequency Words</th>
<th>Phonics Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation</td>
<td>Electricity and magnetism are related.</td>
<td>chalk, electric current, iron, machines, plastic, straw, strongly, weakly, wire</td>
<td>Photos</td>
<td>different, move, must, through, why, work</td>
<td>Consonant digraphs: that, they, thing; both</td>
</tr>
</tbody>
</table>

Outcomes, Activities, Assessment

<table>
<thead>
<tr>
<th>Language Mode</th>
<th>Outcome</th>
<th>Demonstration Materials</th>
<th>Student Task</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Comprehension</td>
<td>Identify structural features of non-fiction text.</td>
<td>Word web OHT</td>
<td>Complete word web and answer questions.</td>
<td>Idea web and answers to questions</td>
</tr>
<tr>
<td>Writing Strategies/Applications</td>
<td>Extract information from text to write answers to questions.</td>
<td>Question and answer OHT</td>
<td>Use information from text to answer questions.</td>
<td>Quality and appropriateness of answers</td>
</tr>
</tbody>
</table>

Before Reading

Introduce the Text and Build Background

Have the students turn to page 12 and read the title of the article. Discuss electricity with the students. Invite them to contribute ideas about the characteristics and uses of electricity. Ask the students: have they ever heard that magnetism and electricity are related?

Invite the students to read the first paragraph on page 12. Revisit the concepts of attraction and repulsion, and of magnetic force from the first article.

Have the students scan page 12 for any word with which they are unfamiliar. Read the word electromagnet together with the students. Reinforce that it combines the concepts of magnetism and electricity in one word.

Discuss with the students the phrase electric current. Elicit from the students any other uses they can think of for the word current, for example a current in a body of water. Guide the students to understanding that current connotes movement from one place to another. Reinforce that it is the movement of electricity that creates a magnetic field.
During Reading

Demonstrate Reading Outcome
Tell the students that a piece of explanatory text can use various structural features to impart information. Tell them that this article uses a structural feature which establishes a sense of direct communication between the writer and the reader. Invite the students to identify the presence of this structural feature on page 12. Elicit the answer that the writer establishes this sense by asking the reader a question. Explain to the students that the article imparts information by asking the reader questions and then supplying the information in an answer.

Teach Reading Outcome
Use the word web OHT (on page 27). Explain to the students that you will use it to identify the presence of the structural feature in question (i.e., question words) within the text. Ask the students to reinforce the question words on page 12, i.e., aren’t they?. Write aren’t they? on the word web.

Apply Reading Outcome
Hand out the word web (on page 28). Have the students read the rest of the article. Invite them to identify any question words that they encounter in the text and write them on their word webs.

After Reading
Apply Comprehension Outcome
Ask the students to contribute question words that they have identified and write them on the word web OHT. If the students have not identified them, elicit why...?, why not...?, and don’t they?
Ask the students the questions that are contained in the text:

- Magnets and electricity are different, aren’t they?
- Magnets work on iron, don’t they?
- Why can’t you make an electromagnet with a straw?

Discuss the question and answer structure with the students. Does it help them to understand the information? Do they have a sense of being in communication with the writer?
Demonstrate Writing Outcome

Use the question and answer OHT (on page 29). Write an answer to the question *Magnets can pick up chalk, can't they?*, thinking aloud as you write. Reinforce that the answer to the question is located within the text, writing *No, magnets cannot pick up chalk.*

Apply Writing Outcome

Hand out the question and answer paper (on page 30). Invite the students to answer the three questions, using the information that they have learned from the text.

Oral Language Outcome

Have the students rehearse and present their explanations to the group.

High-Frequency Words and Phonics

Teach or revise high-frequency words and phonics as necessary.
How to Make a Simple Electromagnet

Article Information

<table>
<thead>
<tr>
<th>Text Type</th>
<th>Visual Literacy Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td>Photos, Numbered text</td>
</tr>
</tbody>
</table>

Outcomes, Activities, Assessment

<table>
<thead>
<tr>
<th>Language Mode</th>
<th>Outcome</th>
<th>Demonstration Materials</th>
<th>Student Task</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Comprehension</td>
<td>Identify structural patterns found in informational text.</td>
<td></td>
<td>Recall main facts in order.</td>
<td>Ability to recall main facts</td>
</tr>
<tr>
<td>Writing Strategies/ Applications</td>
<td>Organize text into a sequential procedure.</td>
<td></td>
<td>Write a procedure, illustrate with labelled diagram.</td>
<td>Appropriateness of procedure</td>
</tr>
</tbody>
</table>

Before Reading

Introduce the Text and Build Background

Discuss with the students what they already know about procedural text. Have the students explain the purpose of a procedure. Relate the discussion to other common procedures, for example, recipes. Ask questions such as:

What would probably happen if you tried to use different materials?
What would probably happen if you did not follow the order of the sequence?
During Reading

Teach Reading Outcome
Invite the students to look at pages 14–15 of the book. Discuss the visual literacy features. Ask the students to explain how a photo, a bullet-point list of materials, and a series of numbered steps help the reader understand how to do something.
Have the students explain the difference in function between a bulleted list and a numbered list. Elicit the answer that the requirements of the bullet-point list do not come in any particular order, while the requirements of the numbered list must be followed in the sequence provided.

Apply Reading Outcome
Have the students read pages 14–15. Ask them to read the numbered steps. Ask if they think the sequence described in the steps follows a logical progression.
Revisit the discussion of the previous article, and the concepts of strong magnetism and electric current. Ask the students why they must wrap a wire around the nail rather than, for example, string.

After Reading
Invite volunteers to explain in their own words how they would make an electromagnet. Discuss what would happen if they used different materials (for example, string instead of wire), or if they followed the steps in a different order.

Teach Writing Outcome
Discuss the standard features of a procedure, i.e., lists, numbered steps and visual representations. Discuss how each contributes to understanding of the procedure, why each is necessary, and what might happen if any were not provided.

Apply Writing Outcome
Have the students choose a topic of their own, for example, a recipe or a pet enclosure such as an ant farm. Invite them to create a list of materials/ingredients, a visual representation such as a labelled diagram, and a series of numbered steps to explain their procedure.
How Do People Use Magnets?

Article Information

<table>
<thead>
<tr>
<th>Text Type</th>
<th>Science Concepts</th>
<th>Visual Literacy Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo Essay</td>
<td>Magnets have many uses.</td>
<td>Photos</td>
</tr>
</tbody>
</table>

Outcomes, Activities, Assessment

<table>
<thead>
<tr>
<th>Language Mode</th>
<th>Outcome</th>
<th>Demonstration Materials</th>
<th>Student Task</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Comprehension</td>
<td>Extract and organize information from factual text.</td>
<td>Venn diagram OHT</td>
<td>Complete Venn diagram.</td>
<td>Venn diagram</td>
</tr>
<tr>
<td>Writing Strategies/ Applications</td>
<td>Write explanatory sentence.</td>
<td></td>
<td>Extrapolate and explain information from visual clues.</td>
<td>Quality and appropriateness of sentence</td>
</tr>
</tbody>
</table>

Before Reading

Introduce the Text and Build Background

Have the students turn to page 16 and read the title. Explain that in a photo essay, the topic of the article is explained visually, and that supporting information is provided by text or captions, rather than vice versa. Tell the students that this photo functions as a list of uses to which people put magnets, but that the list is represented in visual rather than textual form.

During Reading

Demonstrate Reading Outcome

Have the students look at the photos and read the captions on pages 16–17. Ask the students if they were aware of all these uses of magnets. Ask them to identify any use given for magnets of which they were not aware. If the students identify such machines as the computer or television as making a use of magnetism that they were unaware of, note that the photos on pages 16–17 can be divided into two categories: magnets that are used as magnets, to pick up or secure things, and magnets that form part of a larger mechanism, may not be visible, and of which people may not be aware.
Teach Reading Outcome

Use the Venn diagram OHT (on page 31). Write television in the Used in Something Else circle.
Ask the students if they agree with your categorization of the television photo.

Apply Reading Outcome

Hand out the Venn diagram (on page 31). Invite the students to categorize the photos on pages 16–17. Ask them to consider which, if any, of the photos they would categorize as belonging to both circles and would put in the middle section. Explain that they do not necessarily have to include any photos in the centre section, but that they should be prepared to explain why they have categorized the photos in the way that they have.

After Reading

Apply Comprehension Outcome

Discuss the choices that the students made in categorizing the photos. Were there any words that they were unsure how to categorize? How did they resolve the ambiguity? Did they put the photo in the centre of the two bubbles? Did they make a decision to put it in one of the two main bubbles? How did they arrive at that decision?
Call attention to the ATM card and the compass, noting that while they are part of something else, their major function is performed by the magnets. How did the students categorize them? Have they based their categorization on whether the magnets in question are visible? Have they based their categorization of the maglev train on the fact that mag- appears in its name? Discuss the various means by which different students have organized their Venn diagrams.

Teach Writing Outcome

Call the attention of the students to the word also in the caption on the fridge door. Elicit that the implication is that there are two different magnets in use on the fridge. Invite the students to identify the other magnet. Elicit that it is the magnet “holding” the caption on the fridge door. Tell the students that one explanatory caption is missing. Tell them that they are going to write the missing caption now.

Apply Writing Outcome

Hand out the caption sheet (on page 32). Invite the students to write a caption to explain the use of the magnet on the fridge door.
The Birthday Magnets

Article Information

<table>
<thead>
<tr>
<th>Text Type</th>
<th>Visual Literacy Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comic Strip</td>
<td>Illustrations Speech bubbles</td>
</tr>
</tbody>
</table>

Outcomes, Activities, Assessment

<table>
<thead>
<tr>
<th>Language Mode</th>
<th>Outcome</th>
<th>Demonstration Materials</th>
<th>Student Task</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Fluency</td>
<td>Read fluently with expression and intonation.</td>
<td></td>
<td>Make a presentation in groups of four.</td>
<td>Ability to read fluently with expression</td>
</tr>
</tbody>
</table>

Before Reading

Introduce the Text and Build Background

Read the title with the students and have them predict what the story is about.
Have the students read the caption and dialogue on page 18. Ask the students whose present they like better. Ask the students why they think the makers of the ultra-pack have called it “3000.” Ask the students what they think will be in Olivia’s present.
Explain to the students that they are going to read this comic strip as if it was a play script. The background colour behind the text will help them know which character is speaking.

Demonstrate Reading Outcome

Read the entire text to the students, changing your voice for each different character.

During Reading

Teach Reading Outcome

Have the students read the text along with you, changing their voices appropriately.

Apply Reading Outcome

Assign the students different roles. Have them practise reading the article until they are fluent.
Present readings to the class.
After Reading

Discuss the comic strip with the students. Use starter questions such as:

* What extra information do you now have about magnets?
* Did you find the comic strip format useful for learning factual information?
* What do ATM and GPS stand for?
* Why does Olivia call Juan “camping boy?”
* How is Juan feeling in the top right panel of page 23?
Multimedia Information

Explore the multimedia pages with the students.

FAQS

Discuss with the students how they use the Internet to access information. Have them read the FAQS page. Invite the students to formulate further questions that they think may be frequently asked about magnets and to which they do not know the answers. List these questions and discuss the keywords that they would use in an Internet search for the answers. Assign the students the task of finding the answers on the Internet. Discuss the answers and also the process they used. Use questions such as these to start the discussion if necessary:

- How many sites did you have to visit in order to find the answers?
- Could you have refined your search better at the outset?
- Are there some sites, for example, Wikipedia, that you go to first?
- How can you check that information you find on the Internet is correct?

Floating with Magnets

Have the students read the information on page 25. Ask the students if they knew that magnets can be used to make things float. Ask the students to recall where else in the book mention was made of the maglev train. Elicit the answer that the maglev train was mentioned in the article about uses of magnets on pages 16–17. Revisit the photo of a maglev train on page 17. Ask the students if they can find any clue in the photo as to where the maglev train is located. Guide the students to identifying the word Shanghai on the train as locating the train in China. Explain that the maglev train is a recent technological innovation that is located in China. Invite the students to use the Internet or library to research the maglev train. Discuss the information that the students have learned about the maglev train. Ask the students to contribute any facts they have learned. Discuss the students’ methods of research. Use questions such as these to start the discussion if necessary:

- Which websites or books did you use?
- Was it difficult or easy to find relevant information?
Homework Message Board

Article Information

<table>
<thead>
<tr>
<th>Text Type</th>
<th>Science Concepts</th>
<th>Visual Literacy Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Board</td>
<td>Magnets have two poles.</td>
<td>Webpage</td>
</tr>
</tbody>
</table>

Outcomes, Activities, Assessment

<table>
<thead>
<tr>
<th>Language Mode</th>
<th>Outcome</th>
<th>Demonstration Materials</th>
<th>Student Task</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing Strategies/ Applications</td>
<td>Write information from original research in question and answer format.</td>
<td></td>
<td>Research magnetic poles and write information in a question and answer format.</td>
<td>Quality and appropriateness of written work.</td>
</tr>
<tr>
<td>Speaking and Listening</td>
<td>Use volume, phrasing, and pace to enhance meaning.</td>
<td></td>
<td>Read questions and answers in pairs.</td>
<td>Quality and appropriateness of presentation</td>
</tr>
</tbody>
</table>

Before Reading

Introduce the Text and Build Background

Have the students turn to page 26 and read the title. Ask the students to explain what a message board is, as distinguished from other types of Internet sites, such as chatrooms or webzines. Elicit the answer that a message board is a site on which the viewers of the page rather than a webmaster contribute the content in the form of messages posted as part of an ongoing discussion.

Ask the students what they think is meant by a *homework message board*. What might the viewers use such a site for?

Ask the students to read Calvin's first message. What is Calvin using the message board for?
During Reading

Teach Writing Outcome
Revisit multimedia information on pages 24–25. Ask the students to recall the FAQS that they formulated to extend the information contained on page 24.
Divide the students into pairs. Hand out the message board sheet (on page 33). Tell the students that they are going to write a further message board discussion between Calvin and Gilda.
Invite each pair to write a new question for Calvin on the message board sheet, using one of the FAQS that they formulated for the multimedia page.
Have the students read the rest of the article on pages 26–27.

After Reading
Discuss the information about the magnetic poles contained on pages 26–27 with the students. Did they know that it was possible for the magnetic poles to move?
Discuss the text type. What does the Re: preceding Gilda's message mean? Ask the students if they think message boards such as this would be a useful means of researching information for homework. Discuss with the students the issue of whether information obtained on the Internet is always trustworthy.

Apply Writing Outcome
Have each pair of students write an answer on Gilda's behalf to the question that they have written for Calvin. Invite the students to research Gilda's answer on the Internet if they do not already have enough information.

Demonstrate Oral Language Outcome
Read the discussion on pages 26–27 to the students, changing your voice to represent Calvin and Gilda. Show the students how to read the text fluently and with expression.

Apply Oral Language Outcome
Invite each pair to rehearse the discussion that they have written themselves and present it to the group.
Quick 8 Quiz

Have the students take the quiz. Choose whether you want them to give the answers orally or write their responses. If you choose to have the students write their responses, hand out the Quick 8 Quiz answer sheet (on page 34).
You may want to use this as a formal assessment of science concepts, in which case you will not allow them to refer back to the text. If you are using the quiz as an informal assessment, let the students turn to page 32 of the book for clues that will direct them back to the appropriate page for the information.

Learn More

Choose whether you want the students to work independently, in pairs, in ability groups, or mixed ability groups to learn more about magnets.
You may need to specifically teach the following:
 • How to use people, and/or books, and/or the Internet to find information
 • How to take notes
 • How to draw diagrams
 • How to order facts
 • How to choose subheadings
 • How to revise a draft
 • How to check spelling, grammar, and punctuation
 • How to present work appropriately

Set a time for the research project to be finished. Tell the students the form that the presentation will take.
Wrap-Up

Refer back to the initial brainstorm map graphic organizer. Reread the map. Add to or revise any information on the map. Draw a square around the map. Have the students say where they found the information in the brainstorm map graphic organizer. Record this information in the rectangle.

Discuss the book with the students. Use the following questions as discussion starters if necessary:

- What do you now know about magnets that you did not know before you started reading?
- What made this book easy or hard to understand?
- Which article did you like the most? Why?
- What did you like best about the book? Why?
- Which words did you find hard to pronounce, understand, read?
- If you had written the book, what would you have included, left out? Why?
- Do you think the author did a good job of interesting you in magnets? Why or why not?
- How could you use the information and strategies somewhere else that you learned while you were reading this book?
What Are Magnets?

Name: ____________________________
What Are Magnets?

Name: ________________________________

Magnets

Permission is given to teachers to reproduce this page for classroom use.
What Are Magnets?

Word Web

-ic
What Are Magnets?

Name: ______________________________
What Are Magnets?

Name: ____________________________

1. ________________________________

2. ________________________________

3. ________________________________
Magnets and Electricity

Name: ____________________________
Q1. Magnets can pick up chalk, can’t they?
A. ___
__

Q2. __
A. __
__

Q3. __
A. __
__

Q4. __
A. ___
__
Name: ____________________________

Q1. Magnets can pick up chalk, can’t they?
A. __

Q2. Plastic is strongly magnetic, isn’t it?
A. __

Q3. Why do magnets work on iron?
A. __

Q4. Why don’t magnets work on chalk?
A. __

How Do People Use Magnets?

Name:____________________________

Used as Magnets Used in Something Else
Name: ________________________________

1. __
__

2. A magnet also keeps the fridge door closed.
Homework Message Board

Name: ____________________________

From: Calvin “Need Help with Homework” Cable

From: Gilda “Famous Scientist” Gable

1. What happens if you put two south poles together?

2. How can you see a magnetic field?

3. What happens if you cut a magnet in half?

4. What is the biggest magnet on Earth?

5. How do people use magnets to shop?

6. How do people use them to travel?

7. Who made the first compasses?

8. In which country is the north magnetic pole?

Name:____________________________

Quick 8 Quiz