
Predicting Visual Search Slopes 
Dr Alasdair Clarke, Senior Lecturer in Psychology, University of Essex, UK & Dr Anna 
Hughes, Lecturer in Psychology, University of Essex, UK 

 

The dataset 
In this Research Scenario, we are using a real dataset from the journal article ‘Bayesian 
multi-level modelling for predicting single and double feature visual search’. 

The study involved a visual search task where participants were trying to find a unique 
target in a scene of distractors (which all looked the same). Here are some examples of 
stimuli similar to those used in our experiment: 

 

Top left: Here, the target is a blue semicircle within a set of homogeneous (yellow semicircle) 
distractors. Top right: The target is a grey semicircle in circular grey distractors. Bottom left: 
The target is a blue semicircle in orange diamond distractors. Bottom middle: The target is a 
blue semicircle in dark blue triangle distractors. Bottom right: The target is a blue semicircle 
in yellow circular distractors. 

In our paper, we were interested in something called the search slope, which is how the 
difficulty of the search task (as measured by reaction time) changes as a function of the 
number of distractors present. Many studies have shown that the difficulty increases with 
the number of distractors, but the steepness of this slope varies depending on the 
properties of the distractors. 



In this scenario, we will walk you through the key analyses that we did, which all asked the 
question: if we know the search slopes for trials where the distractors are different from 
the target in one feature dimension (i.e. colour), can we use these slopes to predict how 
people will behave in a different set of trials, where the distractors are different from the 
target in two feature dimensions (i.e. colour and shape together). 

The analysis we will do is slightly simplified from the one used in the real paper, so the 
exact numbers you get at the end of this exercise will differ slightly. However, the stages of 
processing (including data cleaning, plotting, and model building) follow the same logic to 
those we used in our real research. Working through these activities will therefore help to 
build the skills you need to work with your own research data. 

Loading in the dataset 

Our dataset is called accuracy_rt_data.txt and it can be found in the folder for this 
research scenario in the OLC. 

ACTIVITY 1: Load in the dataset. 

What do we have in our dataset? 

One of the first challenges we encounter with a new dataset is understanding what each 
column means! It’s always worth spending a few minutes checking this carefully before 
going further. In this dataset we have the following: 

• imageFileName: this column contains the file name for the specific image that was 
shown to the participant. 

• observer: a number that identifies each participant in the experiment. 
• block: this tells us which ‘version’ of the experiment the participants was doing on 

this trial. They are labelled things like ‘1A’, ‘1B’ etc. We will work out more about 
what this means a bit later on. 

• feature: this tells us which type of distractor was present on this trial. At the 
moment these are just labelled with numbers (e.g. 1, 2, 3). Again, we will look into 
making these labels more meaningful later on. 

• n: this is the trial number. Notice how it resets at the beginning of each new 
participant. Note also that trial number starts at zero! (This is an interesting quirk of 
how some programming languages record numbers). 

• distractor_no: this is the number of distractors that were present (in addition to the 
target) on this trial. 

• rt: this is how long it took the participant to find the target (in seconds). 
• accuracy: this tells us whether the participant found the target correctly (labelled 

with a 1) or not (labelled with a 0). 

ACTIVITY 2: Use the head function to check you can see all these columns in the data. 

ACTIVITY 3: Use the summary function to check how many trials each person completed, 
and how many participants were in the experiment. Did all participants complete all trials? 



Data tidying 

Before we begin any analysis, we will need to tidy up our data to make it easier to use. This 
is often the part of analysis that takes the longest! Real data is often messy, and we need to 
make decisions about how to deal with outliers and how best to label the data to make it as 
easy as possible to understand. 

ACTIVITY 4: We won’t need the imageFileName column (mentioned above) for the 
analyses we are going to complete. We can therefore remove it from our dataset at this 
point. Write some code to do this. 

ACTIVITY 5: We mentioned above that the column called n contains trial number 
information, and that these trial numbers start from 0 because this is how many 
programming languages count. However, for humans, it is more useful if the trial numbers 
start from 1! Write some code to change the trial numbers to be more ‘human-readable’. 

ACTIVITY 6: Sometimes it is useful to rename the columns in our data to make them easier 
to understand. Write some code to rename the n column to trial, the distractor_no 
column to nd and the accuracy column to correct. 

ACTIVITY 7: For some of our analyses, we will want to use the log of the number of 
distractors. Write some code to create a new variable in our dataset, log_nd. Hint: we can’t 
take logs of zero (it’s mathematically impossible!) One way of dealing with this is to add 
one to all the numbers before we take the log. 

Checking accuracy 

Before we go further, we should check that people could do the task: in this experiment, we 
expect accuracy rates to be quite high. 

ACTIVITY 8: Calculate accuracy per person. How many of our participants had an accuracy 
above 90%? 

ACTIVITY 9: Write some code to remove incorrect trials. 

Checking reaction times 

We also want to check our reaction time data: we will want to avoid analysing any 
implausibly short or long reaction times, as again, these are likely to not really be 
measuring what we are interested in. 

ACTIVITY 10: In the original paper, we included participants if their average response time 
was not smaller or larger than two standard deviations from the group average response 
time. Write some code to work out which (if any) participants should be removed, and 
remove these participants from the dataset. 

ACTIVITY 11: Finally, for those participants we included, we then removed the top and 
bottom 1% of their data. Write some code to carry out this pre-processing step. 



Thinking about the experimental design 

ND = 0 trials 

ACTIVITY 12: Some trials in the dataset have no distractors i.e. nd = 0. Create a new data 
frame d0 that consists of this subset of the data. What do you notice about the feature 
column for these trials? 

ACTIVITY 13: For the analyses we are going to carry out, we need to duplicate this d0 
dataset three times, setting all the values of the feature column to 1 in the first duplication 
(d01), and then to 2 and 3 in the next duplications (d02 and d03) respectively. This is 
because we will need to use these ‘no distractor’ trials as a baseline for all the different 
feature conditions. Write some code to create these duplications, and then create a final 
full dataset of these three baseline duplications plus all the other trials where nd > 0. 

What’s going on with the block and feature columns? 

The next processing step needs us to understand more about the block and feature 
columns in our data. 

In this experiment, block 1a involved participants searching for a red semicircle target 
among orange, pink or purple semicircular distractors i.e. they searched for a target that 
differed from the distractors by a single feature (in this case colour). Block 1b involved 
participants searching for a semicircular target within triangle, circle or diamond 
distractors - this was therefore another single feature block, but this time using shape. 

In blocks 2a, 2b and 2c participants once again searched for a red semicircle, but this time 
the distractors differed in both shape and colour. These were called double feature 
conditions. 

The table below shows what the different levels of feature mean in the different blocks: 

Block Feature 1 Feature 2 Feature 3 
1a orange pink purple 
1b circle diamond triangle 
2a pink circle orange diamond purple triangle 
2b orange circle purple diamond pink triangle 
2c purple circle pink diamond orange triangle 

ACTIVITY 14: Create a new feature column made by combining the block and feature 
columns and re-label the data so that instead of the feature levels being 1, 2, or 3 they are 
instead the appropriate distractor types for the block. 

Plotting Experiment 1 

It is a good idea to visualise our data before we begin statistical analysis. We will start by 
making the following graph, to understand how reaction time varies with the number of 
distractors for the different types of distractor conditions in Experiment 1: 



 

We can see that, as expected, participants’ reaction times increase with an increasing 
number of distractors. However, the rate of increase does vary depending on the distractor 
type: for example, orange distractors lead to a higher slope compared to the pink and 
purple distractors, and generally the distractors in Experiment 1b (where the distractors 
differed in shape only) lead to higher slopes compared to the distractors in Experiment 1a 
(where the distractors differed in colour only). 

ACTIVITY 15: Subset the data to create a new data frame, d1, which contains only 
Experiment 1 blocks. 

ACTIVITY 16: Use the aggregate function to calculate the average log reaction time per 
person for each combination of distractor type and number, and create a new data frame 
d1agg to store these averages. 

ACTIVITY 17: Now use d1agg to find the overall mean log reaction time for each 
combination of distractor type and number, and create a new data frame d1agg2 to store 
these averages. 

ACTIVITY 18: Use d1agg2 to plot your graph of log number of distractors against average 
log reaction time. Try to make the colours and shapes of the lines/points match those of the 
distractors presented in that condition! 



Modelling Experiment 1 

We can now finally start building our statistical models for Experiment 1! We want to ask: 
how is log reaction time in this experiment affected by the log number of distractors, the 
type of distractors, and their interaction? 

ACTIVITY 19: Write out the model formula (in linear model syntax and using the variable 
names in your dataset d1) that would answer this question. 

ACTIVITY 20: This experiment is a repeated measures design, with each participant 
completing multiple trials. How could we account for this in an lme4 framework? Write out 
the random effects structure that would allow each participant in the data to have their 
own random intercept. (Note: it would be better to allow for random slopes as well, but this 
is difficult in a frequentist framework. In the journal article, we used Bayesian methods to 
be able to achieve this). 

ACTIVITY 21: Put the full model structure together and run the model, as well as the 
model summary. 

ACTIVITY 22: In the model summary, the ‘baseline’ category is indicated by the ‘Intercept’ 
row. However, to help us interpret our results, it would be helpful for us to remove this 
intercept and instead just have one slope for each distractor type and their interaction with 
the log number of distractors. We can do this by adding a 0 to the right hand side of our 
model equation e.g. dv ~ 0 + iv. We will also need to adjust the model formula to include 
just the main effect of feature and the interaction of feature with log_nd. Rewrite your 
model in this way, run this new model, and check how it affects the output. 

ACTIVITY 23: We are going to use the slopes from these models to allow us to make 
predictions about what we should expect to see in Experiment 2. We therefore need to 
extract these slopes (i.e. the feature:log_nd coefficients of the model) and save them to a 
new data frame (slopes1). Write some code to complete this task. 

Modelling Experiment 2 

The goal of the next section is to use the predicted values of the log slopes in the single 
feature conditions (which we calculated in the previous section) to predict the values of the 
log slopes in the double feature conditions i.e. Experiment 2. 

First, we will fit a similar model to the one we fit in the previous section on the Experiment 
2 data so that we know what the true log slope values are. 

ACTIVITY 24: Subset the data to create a new data frame, d2, which contains only 
Experiment 2 blocks. 

ACTIVITY 25: Fit the identical model to the final model we fit on Experiment 1, but using 
the Experiment 2 data (i.e. with the zero intercept and the random effects for participant). 



ACTIVITY 26: As for Experiment 1, we now need to extract these slopes (i.e. the 
feature:log_nd coefficients of the model) and save them to a new data frame (slopes2). 
Write some code to complete this task. 

ACTIVITY 27: translate this equation into code in order to add a new column to your 
slopes2 dataset called orthog_contrast, which is the predicted slope for the double 
feature distractor type based on the orthogonal contrast model. 

ACTIVITY 28: Finally, we want to plot a correlation between orthog_contrast, our 
predicted slopes in Experiment 2, and b, the real, experimentally observed slopes in 
Experiment 2. Compute the best fit line and add it to the graph. Is this correlation 
significant? What do these results tell us about how well our model is able to predict 
behaviour? 

Concluding remarks 
The modelling we have carried out shows that we do seem to be able to predict behaviour 
on the double feature visual search task based on behaviour on the single feature search 
task. 

However, it is always good to think about possible limitations of your findings. For 
example, our correlation here is based on a relatively small sample of data points: perhaps 
it would be more convincing if we were able to increase this by running more experiments 
with different combinations of different colours and shapes. In addition, we might not just 
want to consider the correlation, but whether we can really predict exactly what the slopes 
should be i.e. is the slope of our best fit line close to 1? 


	Predicting Visual Search Slopes
	The dataset
	Loading in the dataset
	What do we have in our dataset?

	Data tidying
	Checking accuracy
	Checking reaction times

	Thinking about the experimental design
	ND = 0 trials
	What’s going on with the block and feature columns?

	Plotting Experiment 1
	Modelling Experiment 1
	Modelling Experiment 2
	Concluding remarks


