Answers to additional business exercises

Chapter 15 Factor Analysis

Follow the instructions throughout Chapter 14 to conduct a principal components analysis, with Oblimin rotation on the 10 agreement items that make up the Staff Satisfaction Survey (Q1a to Q10a). You will see that, although two factors record eigenvalues over 1, the screeplot indicates that only 1 component should be retained.

Run Parallel Analysis using 523 as the number of cases, and 10 as the number of items. The results indicate only 1 component has an eigenvalue which exceeds the equivalent value obtained from a random data set. This result suggests that the items of the Staff Satisfaction Scale are assessing only one underlying dimension (factor).

Rivo and Bartiett 5 Test				
Kaiser-Meyer-Olkin Measure	.881			
Bartlett's Test of Sphericity	Approx. Chi-Square	1626.236		
	df	45		
	Sig.	.000		

KMO and Bartlott's Tost

	Initial	Extraction
q1a	1.000	.523
q2a	1.000	.553
q3a	1.000	.415
q4a	1.000	.730
q5a	1.000	.729
q6a	1.000	.542
q7a	1.000	.491
q8a	1.000	.205
q9a	1.000	.649
q10a	1.000	.490

Communalities

Extraction Method: Principal Component Analysis.

Total	Variance	Exp	lained
-------	----------	-----	--------

	Initial Eigenvalues		Extraction Sums of Squared Loadings		Rotation Sums of Squared Loadings ^a				
		% of			% of			% of	
Component	Total	Variance	Cumulative %	Total	Variance	Cumulative %	Total	Variance	Cumulative %
1	4.174	41.735	41.735	4.174	41.735	41.735	3.826		
2	1.152	11.523	53.258	1.152	11.523	53.258	2.634		
3	.938	9.384	62.643						
4	.756	7.558	70.201						
5	.686	6.860	77.061						
6	.609	6.093	83.154						
7	.504	5.035	88.189						
8	.499	4.993	93.182						
9	.386	3.860	97.043						
10	.296	2.957	100.000						

Extraction Method: Principal Component Analysis.

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

Component Matrix ^a

	Component		
	1	2	
q5a	.809		
q4a	.765	380	
q6a	.734		
q9a	.695	407	
q10a	.693		
q7a	.691		
q3a	.615		
q2a	.533	.519	
q8a	.330	.310	
q1a	.428	.583	

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

Pattern Matrix ^a

	Component		
	1	2	
q4a	.893		
q9a	.859		
q5a	.846		
q10a	.621		
q6a	.535	.330	
q7a	.454	.377	
q1a		.763	
q2a		.736	
q8a		.444	
q3a	.337	.426	

Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser Normalization.

a. Rotation converged in 6 iterations.

Structure Matrix

	Component			
	1	2		
q5a	.854	.371		
q4a	.849			
q9a	.792			
q10a	.685	.414		
q6a	.672	.553		
q7a	.611	.566		
q2a	.325	.744		
q1a		.716		
q3a	.515	.566		
q8a		.453		

Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser Normalization. **Component Correlation Matrix**

Component	1	2
1	1.000	.416
2	.416	1.000

Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser Normalization.

Results of Parallel Analysis

14/02/2004 8:48:25 P	Μ			
Number of variables:	10			
Number of subjects:	523			
Number of replications	: 100			
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		
Eigenvalue # Rando	m Eigenvalue	Standard Dev		
++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		
1	1.2209	.0343		
2	1.1520	.0230		
3	1.1046	.0226		
4	1.0575	.0172		
5	1.0184	.0172		
6	0.9766	.0190		
7	0.9361	.0189		
8	0.8951	.0185		
9	0.8483	.0213		
10	0.7905	.0301		
+++++++++++++++++++++++++++++++++++++++				
14/02/2004 8:48:29 P	М			

Monte Carlo PCA for Parallel Analysis

Include this reference in publications which determined the number of factors to retain using this software: Watkins, M. W. (2000). Monte carlo PCA for parallel analysis [computer software]. State College, PA: Ed & Psych Associates.